79 research outputs found

    Active control of adiabatic soliton fission by external dispersive wave at optical event horizon

    Get PDF
    We show that the group-velocity-led optical event horizon (OEH) in optical fibers provides a convenient way to actively control the propagation property of higher-order solitons by a comparatively weak dispersive wave (DW) pulse. It has been found numerically that clean soliton breakup, a process by which a second-order soliton completely splits into a pair of constituent solitons with vastly different power proportions after interacting with the weak DW pulse, will occur while external DWs become polychromatic. The temporal separation between both constituent solitons can be controlled by adjusting the power of the external DW. The more energetic main soliton is advanced/trailed in time depending on the selected frequency of input DW pulse. We have developed an analytic formalism describing the external acting-force (AF) perturbation. These results provide a fundamental explanation and physical scaling of optical pulse evolution in optical fibers and can find applications in improved supercontinuum sources

    Dark solitons manipulation using optical event horizon

    Get PDF
    We demonstrate that the optical event horizon can provide an effective technique to actively control the propagation properties of a dark soliton with another weak probe wave. Careful power adjustment of the probe wave enables the black soliton converted into a gray one with varying grayness through the nonlinear interaction, corresponding to a nearly adiabatic variation of the soliton’s speed. The sign of the phase angle for the newly formed gray soliton at optical event horizon is significantly dependent on the frequency of the launched probe wave. Linear-stability analysis of dark solitons under the perturbation of a weak probe wave is performed to clarify the intrinsic mechanism of the nonlinear interaction. The probe wave manipulated collisional dynamics between both dark solitons are investigated as an analogue of the combined white-hole and black-hole horizons which provides some insights into exploring the transition between integrable and non-integrable systems

    Static Human Detection and Scenario Recognition via Wearable Thermal Sensing System

    Get PDF
    Conventional wearable sensors are mainly used to detect the physiological and activity information of individuals who wear them, but fail to perceive the information of the surrounding environment. This paper presents a wearable thermal sensing system to detect and perceive the information of surrounding human subjects. The proposed system is developed based on a pyroelectric infrared sensor. Such a sensor system aims to provide surrounding information to blind people and people with weak visual capability to help them adapt to the environment and avoid collision. In order to achieve this goal, a low-cost, low-data-throughput binary sampling and analyzing scheme is proposed. We also developed a conditioning sensing circuit with a low-noise signal amplifier and programmable system on chip (PSoC) to adjust the amplification gain. Three statistical features in information space are extracted to recognize static humans and human scenarios in indoor environments. The results demonstrate that the proposed wearable thermal sensing system and binary statistical analysis method are efficient in static human detection and human scenario perception

    Alternating Deep Low Rank Approach for Exponential Function Reconstruction and Its Biomedical Magnetic Resonance Applications

    Full text link
    Exponential function is a fundamental signal form in general signal processing and biomedical applications, such as magnetic resonance spectroscopy and imaging. How to reduce the sampling time of these signals is an important problem. Sub-Nyquist sampling can accelerate signal acquisition but bring in artifacts. Recently, the low rankness of these exponentials has been applied to implicitly constrain the deep learning network through the unrolling of low rank Hankel factorization algorithm. However, only depending on the implicit low rank constraint cannot provide the robust reconstruction, such as sampling rate mismatches. In this work, by introducing the explicit low rank prior to constrain the deep learning, we propose an Alternating Deep Low Rank approach (ADLR) that utilizes deep learning and optimization solvers alternately. The former solver accelerates the reconstruction while the latter one corrects the reconstruction error from the mismatch. The experiments on both general exponential functions and realistic biomedical magnetic resonance data show that, compared with the state-of-the-art methods, ADLR can achieve much lower reconstruction error and effectively alleviates the decrease of reconstruction quality with sampling rate mismatches.Comment: 14 page

    Matrix Converter Based on Trapezoidal Current Injection

    Get PDF
    The Matrix Converter (MC) is a direct AC-AC power converter featuring high power density and high efficiency. However, the conventional MC (CMC) topologies require high control complexity and high transistor capacity, hindering the wide applications. An emerging MC topology (3CI-MC) based on the third-harmonic current injection (3CI) reduces the control complexity, but require more transistors and complex clamping circuit. This paper proposes the trapezoidal current injection (TCI) technique to form a novel MC topology (TCI-MC), which consists of a line-commutated converter (LCC), a TCI circuit and a voltage source converter (VSC). Compared with the 3CI-MC, the proposed TCI-MC not only maintains the advantages of simple modulation and independent voltage control, but also achieves lower current stress on the LCC part of the circuit. The total transistor capacity of the proposed TCI-MC is the lowest among all the considered MC topologies. The clamping circuit is also simplified and the bidirectional switches are eliminated, reducing the implementation cost. Simulation and experimental results have verified the validity of the proposed topology
    corecore